

Sustainable return to work with (ischemic) cardiovascular diseases

Gilbert Wijntjens, MD PhD

Bedrijfsarts - klinisch arbeidsgeneeskundige

Polikliniek Mens en Arbeid, Department Public and Occupational health, Amsterdam UMC

NVKA CONGRES - VRIJDAG 1 NOVEMBER 2024

Disclosure belangen spreker

(potentiële) belangenverstrengeling	geen /zie hieronder
Voor bijeenkomst mogelijk relevante relaties met bedrijven	Polikliniek Mens en Arbeid, AUMC HumanCapitalCare B.V.
 Sponsoring en onderzoeksgelden Adviseurschappen en honorarium incl. sprekersvergoedingen > € 300,00 Aandeelhouder Andere relatie, namelijk 	

Introduction

Global Population-Attributable Fractions for Five Modifiable Risk Factors Combined

Cardiovascular Disease

 57.2% and 52.6% of cases of incident cardiovascular disease among women and men, respectively, may be attributable to five modifiable risk factors.

- CVD burden continues to rise for almost all countries outside high-income countries, and alarmingly, the agestandardized rate of CVD has begun to rise in some locations where it was previously declining.
- 5-year event rate recurrent ischemic event is 33.5% after ACS

 19 percent of IHD-mortality for men and 9 percent for women can be attributed to occupational CVD risk factors.

Introduction

 57.2% and 52.6% of cases of incident cardiovascular disease among women and men, respectively, may be attributable to five modifiable risk factors.

- CVD burden continues to rise for almost all countries outside high-income countries, and alarmingly, the agestandardized rate of CVD has begun to rise in some locations where it was previously declining.
- 5-year event rate recurrent ischemic event is 33.5% after ACS

Global Population-Attributable Fractions for Five Modifiable Risk Factors Combined

Cardiovascular Disease

 19 percent of IHD-mortality for men and 9 percent for women can be attributed to occupational CVD risk factors.

Introduction

 57.2% and 52.6% of cases of incident cardiovascular disease among women and men, respectively, may be attributable to five modifiable risk factors.

- CVD burden continues to rise for almost all countries outside high-income countries, and alarmingly, the agestandardized rate of CVD has begun to rise in some locations where it was previously declining.
- 5-year event rate recurrent ischemic event is 33.5% after ACS

ÙO

Global Population-Attributable Fractions for Five Modifiable Risk Factors Combined

Cardiovascular Disease

 19 percent of IHD-mortality for men and 9 percent for women can be attributed to occupational CVD risk factors.

Health outcomes

GLOBAL MONITORING REPORT

WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury, 2000–2016

Beroepsziekten | Sterfte

https://www.vzinfo.nl/beroepsziekten/sterfte

- Psychosocial stress: financial stress; job insecurity; mobbing; injustice
- Shift work / irregular working hours
- Long working hours (≥55 hours per week)
- Occupational physical activity
- Sedentary work without compensation
- Chemical hazards
- Occupational noise
- Vibrations
- Ionizing radiation
- Heat/cold

- Psychosocial stress: financial stress; job insecurity; mobbing; injustice
- Shift work / irregular working hours
- Long working hours (≥55 hours per week)
- Occupational physical activity
- Sedentary work without compensation
- Chemical hazards
- Occupational noise
- Vibrations
- Ionizing radiation
- Heat/cold

Long working hours: ≥55 hours per week

194 landen

Share of part-time employment and average working hours per week for the total employed* (2022)

Sources : Eurostat • (*2022 or the latest data; both full-time and part-time workers aged 20-64 in main job)

euronews.

Coronary heart disease

Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603 838 individuals

Mika Kivimäki, Markus Jokela, Solja T Nyberg, Archana Singh-Manoux, Eleonor I Fransson, Lars Alfredsson, Jakob B Bjorner, Marianne Borritz, Hermann Burr, Annalisa Casini, Els Clays, Dirk De Bacquer, Nico Dragano, Raimund Erbel, Goedele A Geuskens, Mark Hamer, Wendela E Hooftman, Irene L Houtman, Karl-Heinz Jöckel, France Kittel, Anders Knutsson, Markku Koskenvuo, Thorsten Lunau, Ida E H Madsen, Martin L Nielsen, Maria Nordin, Tuula Oksanen, Jan H Pejtersen, Jaana Pentti, Reiner Rugulies, Paula Salo, Martin J Shipley, Johannes Siegrist, Andrew Steptoe, Sakari B Suominen, Töres Theorell, Jussi Vahtera, Peter J M Westerholm, Hugo Westerlund, Dermot O'Reilly, Meena Kumari, G David Batty, Jane E Ferrie, Marianna Virtanen, for the IPD-Work Consortium

- 24 studies, 23 cohorts in Europe, USA and Australia
- N=603 838
- Mean follow-up 8.5 years
- Adjustment: Age, sex, SES
- RR Long working hours (≥55h vs. Standard hours (35-40h)

Published studies 1.28 (0.92- Holtermann (2010) ⁴⁷ 4943 591 1.50 (1.03- Netterstrom (2010) ⁴⁹ 12103 854 1.40 (0.96- Toker (2012) ⁴⁸ 20941 947 1.30 (1.03- O'Reilly (2013) ⁸ 435 890 1904 1.25 (1.06- Unpublished studies 1.23 (1.02- 1.23 (1.02- Belstress ¹⁹ 453 129 2089 1.21 (0.99- WOLF-N ²⁰ 457777 2222 1.21 (1.00- COPSOQ-I ¹²² 459 580 2259 1.20 (1.01- HeSsup ²³ 475730 2327 1.22 (1.04- FPS ²⁵ 520 295 2548 1.19 (1.00- HNR ²⁶ 522 069 2586 1.19 (1.02- DWECS ²⁷ 527 604 2652 1.17 (1.01- COPSOQ-II ²⁸ 530 993 2664 1.18 (1.02- NWCS ³⁹ 574 503 2780 1.17 (1.02- Alameda ³⁰ 575 946 2905 1.16 (1.01- NHANES ³¹ 580 868 3185 1.17 (1.03- ACL ³² 582 371 329 1.13 (1.01-<	c (95% CI)	p value
Holtermann (2010) ⁴⁷ 4943 591 1-28 (0-92- Virtanen (2010) ⁴⁴ 10957 750 1-50 (1-03- Netterstrom (2010) ⁴⁹ 12 103 854 1-40 (0-96- Toker (2012) ⁴⁸ 20 941 947 1-30 (1-03- O'Reilly (2013) ⁸ 435 890 1904 1-25 (1-06- Unpublished studies 1-23 (1-02- Belstress ¹⁹ 453 129 2089 1-21 (0-99- WOLF-N ²⁰ 457777 2222 1-21 (1-00- COPSOQ-I ²² 459 580 2259 1-20 (1-01- HeSSup ³³ 475730 2327 1-22 (1-04- FPS ²⁵ 520 295 2548 1-19 (1-00- HNR ²⁶ 522 069 2586 1-19 (1-02- DWECS ²⁷⁷ 527 604 2652 1-17 (1-01- COPSOQ-II ²⁸ 530 993 2664 1-18 (1-02- NWCS ²⁹ 574 503 2780 1-17 (1-03- ACL ³² 582 371 329 1-16 (1-01- NHANES ³¹ 580 868 3185 1-17 (1-03- ACL ³² 587 795 397		
Virtanen (2010) ⁴¹ 10957 750 1-50 (1-03- Netterstrom (2010) ⁴⁹ 12 103 854 1-40 (0-96- Toker (2012) ⁴⁸ 20 941 947 1-30 (1-03- O'Reilly (2013) ⁸ 435 890 1904 1-25 (1-06- Unpublished studies 1-23 (1-02- 1-21 (0-99- WOLF-N ²⁰ 457777 2222 1-21 (1-00- COPSOQ-I ²² 459 580 2259 1-20 (1-01- HeSSup ²³ 475730 2327 1-22 (1-04- FPS ²⁵ 520 295 2548 1-19 (1-00- HNR ²⁶ 522 069 2586 1-19 (1-00- DWECS ²⁷⁷ 527 604 2652 1-17 (1-01- COPSOQ-II ²⁸ 530 993 2664 1-18 (1-02- NWCS ²⁹ 574 503 2780 1-17 (1-02- Alameda ³⁰ 575 946 2905 1-16 (1-01- NHANES ³¹ 580 868 3185 1-17 (1-03- ACL ³² 582 371 3329 1-19 (1-05- WLSG ³³ 587 795 3977 1-33 (1-01- WLSS ³⁴ 590 271 4	·79)	0.1495
Netterstrom (2010) ⁴⁹ 12 103 854 1.40 (0.96 Toker (2012) ⁴⁸ 20 941 947 1.30 (1.03- O'Reilly (2013) ⁸ 435 890 1904 1.25 (1.06- Unpublished studies 1.23 (1.02- 1.23 (1.02- Belstress ¹⁹ 453 129 2089 1.21 (0.99- WOLF-N ²⁰ 457777 2222 1.21 (1.00- COPSOQ-I ²² 459 580 2259 1.20 (1.01- HeSSup ²³ 475730 2327 1.22 (1.04- FPS ²⁵ 520 295 2548 1.19 (1.00- HNR ²⁶ 522 069 2586 1.19 (1.02- DWECS ²⁷⁷ 527 604 2652 1.17 (1.01- COPSOQ-II ²⁸ 530 993 2664 1.18 (1.02- NWCS ²⁹ 574 503 2780 1.17 (1.02- Alameda ³⁰ 575 946 2905 1.16 (1.01- NHANES ³¹ 580 868 3185 1.17 (1.03- ACL ³² 582 371 3229 1.13 (1.01- WLSG ³³ 587 795 3977 1.13 (1.01- WLSG ³⁴ 590 271 4234<	-19)	0.0364
Toker (2012) ⁴⁸ 20941 947 1-30 (1-03- O'Reilly (2013) ⁸ 435 890 1904 1-25 (1-06- Unpublished studies 1-23 (1-02- 1-21 (0-99- WOLF-S ¹⁸ 441 444 2016 1-21 (0-99- Belstress ¹⁹ 453 129 2089 1-21 (1-00- COPSOQ-I ²² 459 580 2259 1-20 (1-01- HeSSup ²³ 475 730 2327 1-22 (1-04- FPS ²⁵ 520 295 2548 1-19 (1-02- DWECS ²⁷ 527 604 2652 1-17 (1-01- COPSOQ-II ²⁸ 530 993 2664 1-18 (1-02- NWCS ²⁹ 575 946 2905 1-16 (1-01- NHANES ³¹ 580 868 3185 1-17 (1-03- ACL ³² 582 371 3329 1-19 (1-05- WLSS ³⁴ 590 271 4234 1-16 (1-03- MIDUS ³⁵ 593 591 4566 1-14 (1-03-	2.05)	0.0821
O'Reilly (2013) ⁸ 435 890 1904 I 25 (1 0 6 - Unpublished studies 1 23 (1 0 2 - I 23 (1 0 2 - WOLF-S ¹⁸ 441 444 2016 I 23 (1 0 2 - Belstress ¹⁹ 453 129 2089 I 21 (0 0 9 - WOLF-N ²⁰ 457777 2222 I 21 (1 0 0 - COPSOQ-I ²² 459 580 2259 I 20 (1 0 1 - HeSSup ²³ 475730 2327 I 22 (1 0 4 - FPS ²⁵ 520 295 2548 I 19 (1 0 0 - HNR ²⁶ 522 069 2586 I 19 (1 0 0 - DWECS ²⁷ 527 60 4 2652 I 17 (1 0 1 - COPSOQ-II ²⁸ 530 993 2664 I 18 (1 0 2 - NWCS ²⁹ 574 503 2780 I 17 (1 0 2 - Alameda ³⁰ 575 946 2905 I 16 (1 0 1 - NHANES ³¹ 580 868 3185 I 19 (1 0 5 - WLSG ³³ 587 795 3977 I 13 (1 0 1 - WLSG ³⁴ 590 271 4234 I 16 (1 0 3 - MIDUS ³⁵ 593 591 4566 I 14 (1 0 3 -	.66)	0.0301
Unpublished studies 1-23 (1-02- WOLF-S ¹⁸ 441444 2016 1-23 (1-02- Belstress ¹⁹ 453129 2089 1-21 (0-99- WOLF-N ²⁰ 457777 2222 1-21 (1-00- COPSOQ-I ²² 459580 2259 1-20 (1-01- HeSSup ²³ 475730 2327 1-22 (1-04- FPS ²⁵ 520295 2548 1-19 (1-02- HNR ²⁶ 522 069 2586 1-19 (1-02- DWECS ²⁷ 527 604 2652 1-17 (1-01- COPSOQ-II ²⁸ 530 993 2664 1-18 (1-02- NWCS ²⁹ 574 503 2780 1-17 (1-02- Alameda ³⁰ 575 946 2905 1-16 (1-01- NHANES ³¹ 580 868 3185 1-17 (1-03- VLSG ³³ 587795 3977 1-13 (1-01- WLSG ³⁴ 590 271 4234 1-16 (1-03- MIDUS ³⁵ 593 591 4566 1-14 (1-03-	.47)	0.0067
WOLF-S ¹⁸ 441444 2016 1·23 (1·02- Belstress ¹⁹ 453 129 2089 1·21 (0·99- WOLF-N ²⁰ 457777 2222 1·21 (1·00- COPSOQ-I ²² 459 580 2259 1·20 (1·01- HeSSup ²³ 475730 2327 1·22 (1·04- FPS ²⁵ 520 295 2548 1·19 (1·00- HNR ²⁶ 522 069 2586 1·19 (1·02- DWECS ²⁷ 527 604 2652 1·17 (1·01- COPSOQ-II ²⁸ 530 993 2664 1·18 (1·02- NWCS ²⁹ 574 503 2780 1·16 (1·01- NHANES ³¹ 580 868 3185 1·17 (1·03- ACL ³² 582 371 329 1·13 (1·01- WLSG ³³ 587795 3977 1·13 (1·01- WLSG ³⁴ 590 271 4234 1·16 (1·03- MIDUS ³⁵ 593 591 4566 1·14 (1·03-		
Belstress ¹⁹ 453 129 2089 1-21 (0-99- WOLF-N ²⁰ 457777 2222 1-21 (1-00- COPSOQ-I ²² 459 580 2259 1-20 (1-01- HeSSup ³³ 475730 2327 1-22 (1-04- FPS ²⁵ 520 295 2548 1-19 (1-02- HNR ²⁶ 522 069 2586 1-19 (1-02- DWECS ²⁷ 527 604 2652 1-17 (1-01- COPSOQ-II ²⁸ 530 993 2664 1-18 (1-02- NWCS ²⁹ 574 503 2780 1-17 (1-03- Alameda ³⁰ 575 946 2905 1-16 (1-01- NHANES ³¹ 580 868 3185 1-17 (1-03- ACL ³² 582 371 3329 1-13 (1-01- WLSG ³³ 587795 3977 1-13 (1-01- WLSG ³⁴ 590 271 4234 1-16 (1-03- MIDUS ³⁵ 593 591 4566 1-14 (1-03-	49)	0.0296
WOLF-N ²⁰ 457777 2222 1-21 (1-00- COPSOQ-I ²² 459580 2259 1-20 (1-01- HeSSup ²³ 475730 2327 1-22 (1-04- FPS ²⁵ 520295 2548 1-19 (1-00- HNR ²⁶ 522 069 2586 1-19 (1-02- DWECS ²⁷ 527 604 2652 1-17 (1-01- COPSOQ-II ²⁸ 530 993 2664 1-18 (1-02- NWCS ³⁹ 574 503 2780 1-17 (1-02- Alameda ³⁰ 575 946 2905 1-16 (1-01- NHANES ³¹ 580 868 3185 1-17 (1-03- ACL ³² 582 371 3329 1-13 (1-01- WLSG ³³ 587795 3977 1-13 (1-01- WLSS ³⁴ 590 271 4234 1-16 (1-03- MIDUS ³⁵ 593 591 4566 1-14 (1-03-	-49)	0.0678
COPSOQ-I ²² 459 580 2259 1-20 (1-01- HeSSup ²³ 475730 2327 1-22 (1-04- FPS ²⁵ 520 295 2548 1-19 (1-02- HNR ²⁶ 522 069 2586 1-19 (1-02- DWECS ²⁷ 527 604 2652 1-17 (1-01- COPSOQ-II ²⁸ 530 993 2664 1-18 (1-02- NWCS ²⁹ 574 503 2780 1-17 (1-02- Alameda ³⁰ 575 946 2905 1-16 (1-01- NHANES ³¹ 580 868 3185 1-17 (1-03- ACL ³² 582 371 3329 1-13 (1-01- WLSG ³³ 587 795 3977 1-13 (1-01- WLSS ³⁴ 590 271 4234 1-16 (1-03- MIDUS ³⁵ 593 591 4566 1-14 (1-03-	-47)	0.0476
HeSSup ²³ 475730 2327 1-22 (1.04- FPS ²⁵ 520295 2548 1.19 (1.00- HNR ²⁶ 522 069 2586 1.19 (1.02- DWECS ²⁷ 527 604 2652 1.17 (1.01- COPSOQ-II ²⁸ 530 993 2664 1.18 (1.02- NWCS ²⁹ 574 503 2780 1.17 (1.02- Alameda ³⁰ 575 946 2905 1.16 (1.01- NHANES ³¹ 580 868 3185 1.17 (1.03- ACL ³² 582 371 3329 1.13 (1.01- WLSG ³³ 587795 3977 1.13 (1.01- WLSS ³⁴ 590 271 4234 1.16 (1.03- MIDUS ³⁵ 593 591 4566 1.14 (1.03-	-44)	0.0417
FPS ³⁵ 520295 2548 1·19 (1·00- HNR ³⁶ 522069 2586 1·19 (1·02- DWECS ²⁷ 527604 2652 1·17 (1·01- COPSOQ-II ²⁸ 530993 2664 1·18 (1·02- NWCS ³⁹ 574503 2780 1·17 (1·02- Alameda ³⁰ 575946 2905 1·16 (1·01- NHANES ³¹ 580868 3185 1·17 (1·03- ACL ³² 582371 3329 1·13 (1·01- WLSG ³³ 587795 3977 1·13 (1·01- WLSS ³⁴ 590271 4234 1·16 (1·03- MIDUS ³⁵ 593591 4566 1·14 (1·03-	·44)	0.0154
HNR ³⁶ 522 069 2586 1·19 (1·02- DWECS ²⁷ 527 604 2652 1·17 (1·01- COPSOQ-II ²⁸ 530 993 2664 1·18 (1·02- NWCS ²⁹ 574 503 2780 1·17 (1·02- Alameda ³⁰ 575 946 2905 1·17 (1·03- NHANES ³¹ 580 868 3185 1·17 (1·03- ACL ³² 582 371 3329 1·13 (1·01- WLSG ³³ 587795 3977 1·13 (1·01- WLSS ³⁴ 590 271 4234 1·16 (1·03- MIDUS ³⁵ 593 591 4566 1·14 (1·03-	.42)	0.0500
DWECS ²⁷ 527604 2652 1.17 (1.01-2 COPSOQ-II ²⁸ 530993 2664 1.18 (1.02-2 NWCS ²⁹ 574503 2780 1.17 (1.02-2 Alameda ³⁰ 575946 2905 1.16 (1.01-2 NHANES ³¹ 580868 3185 1.17 (1.03-2 ACL ³² 582371 3329 1.13 (1.01-2 WLSG ³³ 587795 3977 1.13 (1.01-2 WLSS ³⁴ 590271 4234 1.16 (1.03-2 MIDUS ³⁵ 593591 4566 1.14 (1.03-2	-39)	0.0290
COPSOQ-II ²⁸ 530 993 2664 1.18 (1.02- NWCS ²⁹ 574 503 2780 1.17 (1.02- Alameda ³⁰ 575 946 2905 1.16 (1.01- NHANES ³¹ 580 868 3185 1.17 (1.03- ACL ³² 582 371 3329 1.13 (1.01- WLSG ³³ 587795 3977 1.13 (1.01- WLSS ³⁴ 590 271 4234 1.16 (1.03- MIDUS ³⁵ 593 591 4566 1.14 (1.03-	37)	0.0392
NWCS ²⁹ 574 503 2780 Image: 10 ft of the second sec	-36)	0.0231
Alameda ³⁰ 575946 2905 1·16 (1·01- NHANES ³¹ 580868 3185 1·17 (1·03- ACL ³² 582 371 3329 1·19 (1·05- WLSG ³³ 587795 3977 1·13 (1·01- WLSS ³⁴ 590 271 4234 1·16 (1·03- MIDUS ³⁵ 593 591 4566 1·14 (1·03-	35)	0.0225
NHANES ³¹ 580 868 3185 1·17 (1·03- ACL ³² 582 371 3329 1·19 (1·05- WLSG ³³ 587795 3977 1·13 (1·01- WLSS ³⁴ 590 271 4234 1·16 (1·03- MIDUS ³⁵ 593 591 4566 1·14 (1·03-	·33)	0.0297
ACL ³² 582 371 3329 Image: 10 (1.05- WLSG ³³ 587795 3977 Image: 10 (1.01- WLSS ³⁴ 590 271 4234 Image: 10 (1.03- MIDUS ³⁵ 593 591 4566 Image: 10 (1.03-	-33)	0.0160
WLSG ³³ 587795 3977 1.13 (1.01-5) WLSS ³⁴ 590271 4234 1.16 (1.03-5) MIDUS ³⁵ 593591 4566 1.14 (1.03-5)	·35)	0.0064
WLSS ³⁴ 590271 4234 Image: Head of the second	-27)	0.0329
MIDUS ³⁵ 593591 4566 - 1.14 (1.03-	·29)	0.0115
	-27)	0.0125
HILDA ³⁶ 598470 4652 - 1.13 (1.02-	-26)	0.0159

RR incident CHD: 1.13, 95%-CI 1.02-1.26

Stroke

Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603 838 individuals

Mika Kivimäki, Markus Jokela, Solja T Nyberg, Archana Singh-Manoux, Eleonor I Fransson, Lars Alfredsson, Jakob B Bjorner, Marianne Borritz, Hermann Burr, Annalisa Casini, Els Clays, Dirk De Bacquer, Nico Dragano, Raimund Erbel, Goedele A Geuskens, Mark Hamer, Wendela E Hooftman, Irene L Houtman, Karl-Heinz Jöckel, France Kittel, Anders Knutsson, Markku Koskenvuo, Thorsten Lunau, Ida E H Madsen, Martin L Nielsen, Maria Nordin, Tuula Oksanen, Jan H Pejtersen, Jaana Pentti, Reiner Rugulies, Paula Salo, Martin J Shipley, Johannes Siegrist, Andrew Steptoe, Sakari B Suominen, Töres Theorell, Jussi Vahtera, Peter J M Westerholm, Hugo Westerlund, Dermot O'Reilly, Meena Kumari, G David Batty, Jane E Ferrie, Marianna Virtanen, for the IPD-Work Consortium

- 24 studies, 23 cohorts in Europe, USA and Australia
- N=603 838
- Mean follow-up 8.5 years
- Adjustment: Age, sex, SES
- RR Long working hours (≥55h vs. Standard hours (35-40h)

	Total (N)	Events (N)			Relative risk (95% CI)	p value
Published studies						
O'Reilly (2013)8	414949	215	\rightarrow		- 1.38 (0.88-2.17)	0.1616
Unpublished studies						
WOLF-S18	420496	312 –	_		1.28 (0.84-1.95)	0.2540
COPSOQ-I ²²	422343	349 -	_		1.30 (0.87-1.93)	0.2053
HeSSup ²³	438549	427	-		1.46 (1.03-2.07)	0.0340
FPS ²⁵	483050	760	-		1.40 (1.05-1.88)	0.0229
DWECS ²⁷	488629	852	-		1.25 (1.02_1.77)	0.0314
COPSOQ-II ²⁸	492117	874	-		Long working hours	0.0197
Whitehall II17	499782	1026	-		1.34 (1.05-1.71)	0.0199
Alameda ³⁰	501426	1063			1.38 (1.09-1.75)	0.0077
NHANES ³¹	506554	1180			1.42 (1.14-1.77)	0.0017
ACL ³²	508063	1259			1.37 (1.10-1.70)	0.0042
WLSG ³³	514715	1422			1.38 (1.14-1.68)	0.0012
WLSS ³⁴	518003	1512			1.33 (1.11-1.61)	0.0025
MIDUS ³⁵	520925	1535			1.33 (1.11-1.61)	0.0022
			\rightarrow			
		0.6	1	1.5	2.5	
		Decreased ris	k	Increased risk		

RR incident stroke: 1.33, 95%-Cl 1.11-1.61

Stroke

Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603 838 individuals

Mika Kivimäki, Markus Jokela, Solja T Nyberg, Archana Singh-Manoux, Eleonor I Fransson, Lars Alfredsson, Jakob B Bjorner, Marianne Borritz, Hermann Burr, Annalisa Casini, Els Clays, Dirk De Bacquer, Nico Dragano, Raimund Erbel, Goedele A Geuskens, Mark Hamer, Wendela E Hooftman, Irene L Houtman, Karl-Heinz Jöckel, France Kittel, Anders Knutsson, Markku Koskenvuo, Thorsten Lunau, Ida E H Madsen, Martin L Nielsen, Maria Nordin, Tuula Oksanen, Jan H Pejtersen, Jaana Pentti, Reiner Rugulies, Paula Salo, Martin J Shipley, Johannes Siegrist, Andrew Steptoe, Sakari B Suominen, Töres Theorell, Jussi Vahtera, Peter J M Westerholm, Hugo Westerlund, Dermot O'Reilly, Meena Kumari, G David Batty, Jane E Ferrie, Marianna Virtanen, for the IPD-Work Consortium

- 24 studies, 23 cohorts in Europe, USA and Australia
- N=603 838
- Mean follow-up 8.5 years
- Adjustment: Age, sex, SES
- RR Long working hours (≥55h vs. Standard hours (35-40h)

Stroke

Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603 838 individuals

Mika Kivimäki, Markus Jokela, Solja T Nyberg, Archana Singh-Manoux, Eleonor I Fransson, Lars Alfredsson, Jakob B Bjorner, Marianne Borritz, Hermann Burr, Annalisa Casini, Els Clays, Dirk De Bacquer, Nico Dragano, Raimund Erbel, Goedele A Geuskens, Mark Hamer, Wendela E Hooftman, Irene L Houtman, Karl-Heinz Jöckel, France Kittel, Anders Knutsson, Markku Koskenvuo, Thorsten Lunau, Ida E H Madsen, Martin L Nielsen, Maria Nordin, Tuula Oksanen, Jan H Pejtersen, Jaana Pentti, Reiner Rugulies, Paula Salo, Martin J Shipley, Johannes Siegrist, Andrew Steptoe, Sakari B Suominen, Töres Theorell, Jussi Vahtera, Peter J M Westerholm, Hugo Westerlund, Dermot O'Reilly, Meena Kumari, G David Batty, Jane E Ferrie, Marianna Virtanen, for the IPD-Work Consortium

- 24 studies, 23 cohorts in Europe, USA and Australia
- N=603 838
- Mean follow-up 8.5 years
- Adjustment: Age, sex, SES
- RR Long working hours (≥55h vs. Standard hours (35-40h)

Kivimäki Lancet 2015

Occupational physical activity

The physical activity paradox in cardiovascular disease and all-cause mortality: the contemporary Copenhagen General Population Study with 104 046 adults

Andreas Holtermann (1)¹*, Peter Schnohr², Børge Grønne Nordestgaard (1)^{2,3,4,5}, and Jacob Louis Marott (1)^{2,3}*

Copenhagen General Population Study (N=104 046, 10 years follow-up, MACE=7913, Deaths=9846)

Occupational physical activity

First myocardial infarction

Ziekenhuisopnamen

In 2022 vonden er 33.769 ziekenhuisopnamen wegens een hartinfarct plaats, waarvan 22.789 opnamen van mannen en 10.980 van vrouwen. Dit zijn 62 opnamen per dag voor mannen en 30 opnamen per dag voor vrouwen. De gemiddelde Ieeftijd bij een ziekenhuisopname vanwege een hartinfarct was <mark>67 jaar bij mannen en 71 jaar bij vrouwen.</mark>

First myocardial infarction

Ziekenhuisopnamen

In 2022 vonden er 33.769 ziekenhuisopnamen wegens een hartinfarct plaats, waarvan 22.789 opnamen van mannen en 10.980 van vrouwen. Dit zijn 62 opnamen per dag voor mannen en 30 opnamen per dag voor vrouwen. De gemiddelde Ieeftijd bij een ziekenhuisopname vanwege een hartinfarct was <mark>67 jaar bij mannen en 71 jaar bij vrouwen.</mark>

First myocardial infarction

Approximately half of individuals with first MI are of working age!

Hart en vaatcijfers

Return to work: costs

- Number of patients with IHD in the workforce is increasing
 - Increasing number of patients with IHD
 - Increasing retirement age
 - Improved treatment strategies
 - Societal demand
- Economic burden of cardiovascular diseases
 - Mortality
 - Premature retirement
 - Absenteeism
 - Loss of productivity/presenteeism

Return to work: costs

- Number of patients with IHD in the workforce is increasing
 - Increasing number of patients with IHD
 - Increasing retirement age
 - Improved treatment strategies
 - Societal demand
- Economic burden of cardiovascular diseases
 - Disability
 - Premature retirement
 - Absenteeism
 - Loss of productivity

Figure 2 Distribution of cardiovascular disease-related total costs across cost categories

Overall, CHD was estimated to have cost the EU €77 billion in 2021: over one-quarter of the overall cost of CVD. This represented a cost of €173 per EU citizen, which after adjusting for price differentials ranged from €100 in Luxembourg to €325 in Lithuania (*Table 4*). Of the total cost of CHD, 37% of costs were due to health-care, 2% to social care, 24% to productivity losses, and 37% to informal care.

- Inability to resume employment after acute MI has important implications for patients.
 - Worse survival
 - Lower quality of life and lower self-rated health status
 - Increased depression or anxiety
 - Financial stress / job insecurity
 - More difficulties affording medicine (USA)

- Inability to resume employment after acute MI has important implications for patients.
 - Worse surival
 - Lower quality of life and lower self-rated health status
 - Increased depression or anxiety
 - Financial stress / job insecurity
 - More difficulties affording medicine (USA)

- Inability to resume employment after acute MI has important implications for patients.
 - Worse surival
 - Lower quality of life and lower self-rated health status
 - Increased depression or anxiety
 - Financial stress / job insecurity
 - More difficulties affording medicine (USA)

Table 2. Characteristics at the time of the interview in function of employment status.

	Employed pre-event (n=2661) % (n)	RTVV (n = 2014) % (n)	Non-RTVV (n=637) % (n)
HADS-D			
Normal	81.1 (2050/2527)	83.7 (1594/1905)	73.5 (450/612)
Mild	12.9 (362/2527)	11.5 (220/1905)	17.0 (104/612)
Moderate to severe	6.0 (151/2527)	4.8 (91/1905)	9.5 (58/612)
HADS-A			
Normal	74.0 (1870/2527)	77.2 (1470/1905)	64.5 (395/612)
Mild	14.9 (376/2527)	13.2 (252/1905)	19.8 (121/612)
Moderate to severe	11.1 (281/2527)	9.6 (183/1905)	15.7 (96/612)
HeartQoLgobal (SD)	2.30 (0.61)	2.37 (0.56)	2.09 (0.68)
HeartQoL _{physical} (SD)	2.29 (0.65)	2.37 (0.61)	2.06 (0.72)
HeartQoLemo (SD)	2.33 (0.69)	2.39 (0.65)	2.14 (0.79)

- Inability to resume employment after acute MI has important implications for patients.
 - Worse surival
 - Lower quality of life and lower self-rated health status
 - Increased depression or anxiety
 - Financial stress / job insecurity
 - More difficulties affording medicine (USA)

Return-to-work

- Return-to-work-time depends on:
 - Occupation
 - Diagnosis
 - Treatment
 - Co-morbidities
 - Coping

<u>Aanbevelingen</u>

- De projectgroep beveelt aan dat de begeleiding uit de volgende 6 stappen bestaat: globale screening, uitgebreidere screening, multidisciplinair overleg waarin interventies worden geselecteerd, overleg met de bedrijfsarts c.q. verzekeringsarts van het UWV, uitvoeren van de interventies en monitoring van werkhervatting.
- Het is sterk aan te bevelen dat er, met schriftelijke toestemming van de patiënt, altijd gecommuniceerd wordt met de bedrijfsarts over 1) de belastbaarheid (gegevens van de ergometrie en cardiaal-medische factoren zoals ischemie) en 2) het interventieplan vanuit de hartrevalidatie.
- Deze communicatie moet volgens de richtlijnen van de KNMG verlopen en is bij voorkeur vastgelegd in een lokaal protocol om juridische fouten te voorkomen.
- Het is sterk aan te bevelen zo vroeg mogelijk in de hartrevalidatie werkhervatting ter sprake te brengen, een interventieplan op te stellen en de begeleiding van werkhervatting te starten.
- De projectgroep is van mening dat interventie(s) gericht op het wegnemen van eventuele belemmerende factoren voor de werkhervatting op maat moeten zijn, dat wil zeggen aansluiten op de knelpunten geconstateerd in de screening (bijlage 8).

Return-to-work

- Return-to-work-time depends on:
 - Occupation
 - Diagnosis
 - Treatment
 - Co-morbidities
 - Coping
- (At least) during cardiac rehabilitation

ADVIEZEN MET HET OOG OP OPTIMALE WERKHERVATTING

- Werkhervatting vindt idealiter tijdens de hartrevalidatie plaats en dient onder begeleiding opgebouwd te worden.
- Bied als bedrijfsarts actief individuele begeleiding aan, aan werkenden die niet deelnemen aan hartrevalidatie.¹⁸
- Verwijs, in overleg met de werkende, alle werkenden na een ischemische hartziekte voor psychologische ondersteuning en/of ontspanningstherapie, tenzij dit al is gebeurd bij de hartrevalidatie.¹⁸

<u>Aanbevelingen</u>

- De projectgroep beveelt aan dat de begeleiding uit de volgende 6 stappen bestaat: globale screening, uitgebreidere screening, multidisciplinair overleg waarin interventies worden geselecteerd, overleg met de bedrijfsarts c.q. verzekeringsarts van het UWV, uitvoeren van de interventies en monitoring van werkhervatting.
- Het is sterk aan te bevelen dat er, met schriftelijke toestemming van de patiënt, altijd gecommuniceerd wordt met de bedrijfsarts over 1) de belastbaarheid (gegevens van de ergometrie en cardiaal-medische factoren zoals ischemie) en 2) het interventieplan vanuit de hartrevalidatie.
- Deze communicatie moet volgens de richtlijnen van de KNMG verlopen en is bij voorkeur vastgelegd in een lokaal protocol om juridische fouten te voorkomen.
- Het is sterk aan te bevelen zo vroeg mogelijk in de hartrevalidatie werkhervatting ter sprake te brengen, een interventieplan op te stellen en de begeleiding van werkhervatting te starten.
- De projectgroep is van mening dat interventie(s) gericht op het wegnemen van eventuele belemmerende factoren voor de werkhervatting op maat moeten zijn, dat wil zeggen aansluiten op de knelpunten geconstateerd in de screening (bijlage 8).

Return-to-work

- Return-to-work-time depends on:
 - Occupation
 - Diagnosis
 - Treatment
 - Co-morbidities
 - Coping
- (At least) during cardiac rehabilitation

<u>Aanbevelingen</u>

- De projectgroep beveelt aan dat de begeleiding uit de volgende 6 stappen bestaat: globale screening, uitgebreidere screening, multidisciplinair overleg waarin interventies worden geselecteerd overleg met de bedrijfsarts c.q. verzekeringsarts van het UWV, uitvoeren van de interventies en monitoring van werkhervatting.
- Het is sterk aan te bevelen dat er, met schriftelijke toestemming van de patiënt, altijd gecommuniceerd wordt met de bedrijfsarts over 1) de belastbaarheid (gegevens van de ergometrie en cardiaal-medische factoren zoals ischemie) en 2) het interventieplan vanuit de hartrevalidatie.
- Deze communicatie moet volgens de richtlijnen van de KNMG verlopen en is bij voorkeur vastgelegd in een lokaal protocol om juridische fouten te voorkomen.
- Het is sterk aan te bevelen zo vroeg mogelijk in de hartrevalidatie werkhervatting ter sprake te brengen, een interventieplan op te stellen en de begeleiding van werkhervatting te starten.
- De projectgroep is van mening dat interventie(s) gericht op het wegnemen van eventuele belemmerende factoren voor de werkhervatting op maat moeten zijn, dat wil zeggen aansluiten op de knelpunten geconstateerd in de screening (bijlage 8).

Cardiac rehabilitation

Hartrevalidatie is gericht op verbetering van de functionele capaciteit, fysiek herstel, en het verbeteren van het psychisch welzijn en sociaal functioneren, hetgeen leidt tot verlaging van cardiovasculaire incidenten en verhoging van de kwaliteit van leven van de patiënt. [Piepoli 2010]

CR assessment of:

- Personel barriers that impede return-to-work
- Cardiac risk factors that might infere with RTW / work capacity
- Occupational CVD risk factors for recurrent events

Cardiac rehabilitation

I. INTAKE (Vragen die altijd gesteld moeten worden)

- 1. Heeft u betaald werk¹ verricht voorafgaande aan het hartprobleem?
 - [] Ja, ga verder met vraag 2
 - [] Nee, stop met vragenlijst
- 2. Is het de bedoeling dat u weer gaat werken?
 - [] Ja, ga verder met vraag 3
 - [] Nee, stop met vragenlijst
- 3. Welk werk verricht u?
- 4. Heeft u zich op het werk gestrest gevoeld in het afgelopen jaar?
 - [] Ja
 - [] Nee
- Heeft u mogelijk te maken met lichamelijk zware of gevaarlijke werkomstandigheden?
 [] Ja
 - [] Nee
- 6. Denkt u dat u op korte termijn zonder problemen kunt opstarten2?
 - [] Ja, toelichting:
 - [] Waarschijnlijk wel
 - [] Ik heb twijfels
 - [] Nee

Voorlopige conclusie m.b.t. werkhervatting:

[] Er zijn geen problemen te verwachten (geen risicoberoep volgens zorgverlener en 'nee'op vraag 4, 5 of 6). Er volgt een inventarisatie van cardiaal-medische belastbaarheid en check op de behoefte aan begeleiding.

[] Er zijn wel problemen te verwachten. Er volgt een inventarisatei van cardiaal-medische belastbaarheid, check op de behoefte aan begeleiding en uitgebreidere screening.

Checklist cardiaal-medische belastbaarheid (ALTIJD invullen)³:

- [] Restischemie
- [] Verminderde hartfunctie (LVEF < 40%)
- [] Medicatie (m.n. β -blokkers)
- [] Ritmestoornissen (atriaal of ventriculair)
- [] Ventriculaire tachycardieën (bij inspanning en stress)
- [] Onbehandelde/therapieresistente hypertensie ($\geq 160/100 \text{ mmHg}$)
- [] Lage inspanningstolerantie (geobjectiveerd door een inspanningstest)⁴
- [] ICD/PM-implantatie

Return to work:

Barriers for return to work

Socio-economische factoren

HogeHet vrouwelijk geslacht, oudere leeftijd, laag inkomen en lage opleiding zijn onafhankelijkeGRADErisicofactoren voor vertraagde werkhervatting.

Bronnen [Smedegaard 2017, Osler 2014, Butt 2018, Dreyer 2016, Catala tella 2017, Worcester 2014, Bergvik 2012]

Psychische factoren

Hoge Depressie is een onafhankelijke risicofactor voor vertraagde werkhervatting.

GRADE

Bronnen [O'Neil 2010, Smedegaard 2017, Dreyer 2016, Catala Tella 2017, Worcester 2014]

Fysieke (of klinische) factoren

HogeHarfalen, chronische nierziekte, beroerte en leverziekte zijn onafhankelijke risicofactoren voorGRADEvertraagde werkhervatting.

Bronnen [Smedegaard 2017, Butt 2018]

That interfere with RTW / work capacity

- Residual ischemia
- Reduced heart function (LVEF <40%)
- Low physical endurance tolerance
- Medication
- (Ventricular) Arrhytmias
- Resistent hypertension
- ICD/Pacemaker

(zie ook paragraaf 5.4). Brügemann en Hellemans Brügemann 2007 concluderen dat bij patiënten die voldoen aan de volgende criteria, er geen cardiaal-medische belemmeringen zijn om het werk te hervatten: (a) zonder klachten, (b) met een bij ergometrie goede inspanningstolerantie (> 7 MET) en afwezigheid van aanwijzingen voor ischemie en (c) met een normale pompfunctie.

That interfere with RTW / work capacity

• Residual ischemia

- Reduced heart function (LVEF <40%)
- Low physical endurance tolerance
- Medication
- (Ventricular) Arrhytmias
- Resistent hypertension
- ICD/Pacemaker

Compendium of Physical Activities

Quantifying Physical Activity Energy Expenditure

Specific Activity Code	MET Value	Activity Description
11000	2.0	Active workstation, Pedal desk, balance chair/ball, General, light effort
11001	3.5	Active workstation, Pedal desk (40 watts)
11002	5.3	Active workstation, Pedal desk (80 watts)
11003	2.0	Active workstation, treadmill desk, walking slowly 1.0 mph or less
11004	2.8	Active workstation, treadmill desk, walking 1.0 – 2.0 mph
11006	3.0	Airline flight attendant
11008	4.8	Apple Harvesting
11010	4.0	Bakery, general, moderate effort
11015	2.0	Bakery, light effort
11020	2.3	Bookbinding
11030	6.0	Building road, driving heavy machinery
11035	2.0	Building road, directing traffic, standing

CLASSIFICATIE	BETEKENIS	ERGOMETRIE
NYHA I	Geen klachten	> 7 MET 11
NYHA II	Klachten bij zware inspanning, 3 trappen van 15 treden	4-7 MET
NYHA III	Klachten bij geringe inspanning, 1 trap van 15 treden	2-4 MET
NYHA IV	Klachten in rust	1 MET

That interfere with RTW / work capacity

- Residual ischemia
- Reduced heart function (LVEF <40%)
- Low physical endurance tolerance
- Medication
- (Ventricular) Arrhytmias
- Resistent hypertension
- ICD/Pacemaker

A static load >15% of the person's (LVEF<49%) maxmum strenght negatively affects the pump function of the heart.

Cox regression analysis, after stratification, of the impact of different variables on left ventricular function and the risk of retirement

	Retired				
Variables	LVEF $\leq 35\%$, adjusted risk ratio ^a (95% CI)	LVEF > 35%, adjusted risk ratio ^a (95% CI)			
Age, years					
<50	1.0 (reference)	1.0 (reference)			
50-60	1.72 (0.44-6.65)	1.57 (0.85-2.88)			
>60	4.20 (1.00-17.34)	3.74 (1.94–7.19)			
Female vs. male	3.90 (1.18-12.62)	1.32 (0.69-2.55)			
Physical job demands					
Sedentary	1.0 (reference)	1.0 (reference)			
Light	1.12 (0.45-2.81)	1.01 (0.61-1.68)			
Heavy	3.83 (1.02-14.30)	1.08 (0.58-1.99)			

That interfere with RTW / work capacity

- Residual ischemia
- Reduced heart function (LVEF <40%)
- Low physical endurance tolerance
- Medication
- (Ventricular) Arrhytmias
- Resistent hypertension
- ICD/Pacemaker

Table I. Estimation of maximum cardiopulmonary capacity and full-time working capacity on the basis of the achieved peak VO₂, German recommendations.

Maximum capacity on the ergometer ¹⁴	Maximum capacity in relation to BW	Endurance capacity on the ergometer	Estimated energy expenditure (METs)* ¹⁵	Work intensity
<50 Watts	About Watt/kg BW	Up to 50 Watts	<3.1	Very light
>50–75 Watts	>I-I.5 Watts/kg BW	>50-75 Watts	<4.3	Light
>75–125 Watts	>1.5–2 Watts/kg BW	<75–100 Watts	<6.4	Moderate
125–150 Watts	>2 Watts/kg BW	>100 Watts	<7.4	Heavy

BW: body weight; MET: metabolic equivalent.

*Exemplary for patients with a body weight of 80 kg (adapted from Löllgen¹⁴ and Haskell et al.¹⁵).

That interfere with RTW / work capacity

- Residual ischemia
- Reduced heart function (LVEF <40%)
- Low physical endurance tolerance
- Medication
- (Ventricular) Arrhytmias
- Resistent hypertension
- ICD/Pacemaker

Increased Incidence of Life-Threatening Ventricular Arrhythmias in Implantable Defibrillator Patients After the World Trade Center Attack

Jonathan S. Steinberg, MD, FACC,*† Aysha Arshad, MBBS,* Marcin Kowalski, MD,* Atul Kukar, DO,* Valentin Suma, MD,* Margot Vloka, MD,*† Frederick Ehlert, MD,*† Bengt Herweg, MD,*† Jacqueline Donnelly, BA,* Julie Philip, PA-C,* George Reed, PHD,‡ Alan Rozanski, MD, FACC* New York, New York; Ridgewood, New Jersey; and Worcester, Massachusetts

Emotional and Physical Precipitants of Ventricular Arrhythmia

Rachel Lampert, MD; Tammy Joska, MS; Matthew M. Burg, PhD; William P. Batsford, MD; Craig A. McPherson, MD; Diwakar Jain, MD

- *Background*—Observational studies have suggested that psychological stress increases the incidence of sudden cardiac death. Whether emotional or physical stressors can trigger spontaneous ventricular arrhythmias in patients at risk has not been systematically evaluated.
- Methods and Results—Patients with implantable cardioverter-defibrillators (ICDs) were given diaries to record levels of defined mood states and physical activity, using a 5-point intensity scale, during 2 periods preceding spontaneously occurring ICD shocks (0 to 15 minutes and 15 minutes to 2 hours) and during control periods 1 week later. ICD-stored electrograms confirmed the rhythm at the time of shock. A total of 107 confirmed ventricular arrhythmias requiring shock were reported by 42 patients (33 men; mean age, 65 years; 78% had coronary artery disease) between August 1996 and September 1999. In the 15 minutes preceding shock, an anger level ≥3 preceded 15% of events compared with 3% of control periods (*P*<0.04; odds ratio, 1.83; 95% confidence intervals, 1.04 to 3.16) Other mood states (anxiety, worry, sadness, happiness, challenge, feeling in control, or interest) did not differ. Patients were more physically active preceding shock than in control periods. Anger and physical activity were independently associated with the preshock period. *Conclusions*—Anger and physical activity can trigger ventricular arrhythmias in patients with ICDs. Future investigations of therapies aimed at blocking a response to these stressors may decrease ventricular arrhythmias and shocks in these patients. (*Circulation*. 2002;106:1800-1805.)

That interfere with RTW / work capacity

- Residual ischemia
- Reduced heart function (LVEF <40%)
- Low physical endurance tolerance
- Medication
- (Ventricular) Arrhytmias
- Resistent hypertension
- ICD/Pacemaker

The maximum "safe" blood pressure for resuming work with moderate/heavy physical work and/or increased workload =< RR 160/100 mmHg

That interfere with RTW / work capacity

- Residual ischemia
- Reduced heart function (LVEF <40%)
- Low physical endurance tolerance
- Medication
- (Ventricular) Arrhytmias
- Resistent hypertension
- ICD/Pacemaker

And risk for recurrent events

- Job strain
- Effort-reward imbalance
- Irregular working hours
- Occupational physical activity
- Long working hours

- Smoking, alcohol, drug
- Obesity
- Sleeping
- Diet
- leisure physical activity

And risk for recurrent events

- Job strain
- Effort-reward imbalance
- Irregular working hours
- Occupational physical activity
- Long working hours

Figure 1. The job demand-control model according to Karasek

And risk for recurrent events

- Job strain
- Effort-reward imbalance 🗹
- Irregular working hours
- Occupational physical activity
- Long working hours

Figure 2. The effort-reward imbalance model according to Siegrist

Risk for recurent ischemic events

N=738 – return to work after first MI

Follow-up: 4 years

High versus low reward: HR 1.77, 95%-CI: 1.16, 2.71

		Unadjusted				Multivariate Model	
ERI Components	<i>n</i> = 738	Event Rate	HR ^a	95% CI	HR^{a}	95% CI	
Extrinsic effort							
Low	483	2.92	1.00	Reference	1.00	Reference	
High	255	3.07	1.05	0.69-1.60	1.17 ^b	0.59-2.34	
Reward							
High	485	2.26	1.00	Reference	1.00	Reference	
Low	253	4.44	1.96	1.32-2.93	1.77 ^b	1.16-2.71	
ERI ratio							
Low	596	2.65	1.00	Reference	1.00	Reference	
High	142	4.45	1.68	1.07-2.63	1.75 ^b	0.99-3.08	

And risk for recurrent events

- Job strain
- Effort-reward imbalance
- Irregular working hours 🗹
- Occupational physical activity
- Long working hours

Risk for recurent ischemic events

SOLID-TIMI 52-trial

N=13 026 – return to work after first ACS

Follow-up: 2.5 years

Night work (\geq 3 night shifts/week for \geq 1 year) vs day work

Recurrent ischemic events

Vragenlijst knelpunten voor nachtdienst

- 1 Hoe staat de werkende tegenover nachtdiensten: vindt hij/zij het zwaar (vermoeidheid, stress) of voelt hij/zij zich er goed bij?
- 2 Welke diensten hebben zijn/haar voorkeur (ochtend-/avondmensen)?
- 3 Heeft de werkende zeggenschap over werktijden en de mogelijkheid om de werktijden aan te passen en verstoringen te beperken? En wordt die zeggenschap verstandig gebruikt?
- 4 Is er de angst om de baan te verliezen als de nachtdiensten niet meer gedaan mogen worden?
- 5 Zijn er financiële gevolgen als de werkende geen nachtdiensten meer uitvoert?
- 6 Zijn er sociale gevolgen: is het werk bijvoorbeeld afgestemd op dat van de partner of op de kinderopvang?
- 7 Is er cardiale comorbiditeit (hartfalen, slechte linker ventrikel functie, significante ritme stoornissen)?
- 8 Is er sprake van comorbiditeit?
- 9 In geval van therapie voor cardiometabole risicofactoren of comorbiditeit:
- a is de betreffende klacht of risicofactor onder controle met behandeling?
- b volgt de medewerker de behandelvoorschriften trouw aangaande gerapporteerde klachten of risicofactoren?
- c is de medewerker in staat om goed in te spelen op bestaande klachten en eventuele onderliggende ziekten?
- 10 Hoe is de fysieke conditie?
- 11 Zijn er stressgerelateerde problemen, depressieve klachten, angsten?
- 12 Hoe is de slaapkwaliteit en slaapduur?
- 13 Welk soort werk wordt 's nachts uitgevoerd (bijvoorbeeld fysiek zwaar werk, veiligheidsfunctie)?
- 14 Zijn aanpassingen mogelijk (zoals lichter rooster, minder nachtdiensten, kortere diensten, meer hersteltijd, langere pauzes, minder fysieke belasting)?

Shift work vs. Financial stress vs. Job insecurity?

And risk for recurrent events

- Job strain
- Effort-reward imbalance
- Irregular working hours
- Occupational physical activity
- Long working hours

Risk for recurent ischemic events

SOLID-TIMI 52-trial

N=13 026 - return to work after first ACS

Follow-up: 2.5 years

Night work (\geq 3 night shifts/week for \geq 1 year) vs day work

And risk for recurrent events

- Job strain
- Effort-reward imbalance
- Irregular working hours
- Occupational physical activity
- Long working hours

......Work anamnesis, questionnaires, RIE

And risk for recurrent events

- Job strain
- Effort-reward imbalance
- Irregular working hours
- Occupational physical activity
- Long working hours 🗸

Risk for recurent ischemic events

N=967– return to work after first MI

Follow-up: 5.9 years

fatal or nonfatal MI and unstable angina

HR vs. 35 to 40 h/week: 1.67; 95%-CI: 1.10 to 2.53

Particulate Matter (PM_{2 5})

Contents lists available at ScienceDirect Environmental Research journal homepage: www.elsevier.com/locate/envres

Atherosclerotic process in taxi drivers occupationally exposed to air pollution and co-morbidities

Natália Brucker a,b, Mariele F. Charão a,b, Angela M. Moro a,b, Pedro Ferrari c, Guilherme Bubols^a, Elisa Sauer^{a,f}, Rafael Fracasso^{a,b}, Juliano Durgante^{a,f}, Flávia V. Thiesen^c, Marta M. Duarte^d, Adriana Gioda^e, Iran Castro^f, Paulo H. Saldiva⁸, Solange C. Garcia^{a,f,*}

Original research

CrossMark

Heath/Cold

<u>Circulation</u>

ORIGINAL RESEARCH ARTICLE

Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries

Barrak Alahmad^O, MD, MPH, PhD; Haitham Khraishah^O, MD; Dominic Royé, PhD; Ana Maria Vicedo-Cabrera, PhD; Yuming Guo, PhD; Stefania I. Papatheodorou, MD; Souzana Achilleos, ScD; Fiorella Acquaotta, PhD; Ben Armstrong, PhD; Michelle L. Bell[®], PhD; Shih-Chun Pan, PhD; Micheline de Sousa Zanotti Stagliorio Coelho[®], PhD; Valentina Colistro[®], PhD; Tran Ngoc Dang, PhD; Do Van Dung[®], PhD; Francesca K. De' Donato[®], PhD; Alireza Entezari, PhD; Yue-Liang Leon Guo, PhD; Masahiro Hashizume, PhD; Yasushi Honda, PhD; Ene Indermitte, PhD; Carmen Íñiguez¹, PhD; Jouni J.K. Jaakkola, PhD; Ho Kim, PhD; Eric Lavigne¹, PhD; Whanhee Lee, PhD; Shanshan Li, PhD; Joana Madureira, PhD; Fatemeh Mayvaneh, PhD; Hans Orru, PhD; Ala Overcenco¹⁰, PhD; Martina S. Ragettli, PhD; Niilo R.I. Ryti¹⁰, PhD; Paulo Hilario Nascimento Saldiva¹⁰, PhD; Noah Scovronicko, PhD; Xerxes Seposo, PhD; Francesco Sera, PhD; Susana Pereira Silvao, MSc; Massimo Stafoggia^(D), PhD; Aurelio Tobias^(D), PhD; Eric Garshick MD; Aaron S. Bernstein^(D), MD; Antonella Zanobetti^(D), PhD; Joel Schwartz^O, PhD; Antonio Gasparrini, PhD; Petros Koutrakis, PhD

Occupational noise (85dB)

(1)

The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 153. Occupational chemical

exposures and cardiovascular disease

Contents lists available at ScienceDirect

Environment International

The effect of occupational exposure to noise on ischaemic heart disease, stroke and hypertension: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-Related Burden of Disease and Injury

Liliane R. Teixeira^{a,1}, Frank Pega^{b,*}, Angel M. Dzhambov^{c,d}, Alicja Bortkiewicz^e, Denise T. Correa da Silva^a, Carlos A.F. de Andrade^{f,g}, Elzbieta Gadzicka^e, Kishor Hadkhale^h, Sergio Iavicoli¹, Martha S. Martínez-Silveira¹, Małgorzata Pawlaczyk-Łuszczyńska^k, Bruna M. Rondinone¹, Jadwiga Siedlecka^e, Antonio Valenti¹, Diana Gagliardi^{1,1}

Whole body vibrations

Occupational Medicine 2006;56:338-344 Published online 22 May 2006 doi:10.1093/occmed/kgl02-

Vibration exposure and myocardial infarction incidence: the VHEEP case-control study

Bodil Björ¹, Lage Burström², Tohr Nilsson³ and Christina Reuterwall⁴

Crystalline silica

Open access

BMJ Open Occupational exposure to silica and risk of heart disease: a systematic review with meta-analysis

> Kai Liu ⁶, ¹ Min Mu, ² Kehong Fang, ³ Yuanyuan Qian, ¹ Song Xue, ⁴ Weijiang Hu, ⁵ Meng Ye¹

Radiation

Journal of the American Heart Association

CONTEMPORARY REVIEW

Radiation-Induced Cardiovascular Disease: Review of an Underrecognized Pathology

Eve Belzile-Dugas , MD; Mark J. Eisenberg , MD, MPH

&... Asbestos, CO/CS₂, metals (lead, arsenic, cadmium, aluminium), pulp and paper

Workers at risk

Table 2. Occupations with an increased incidence of a first myocardial infarction among the men. (95% CI = 95% confidence interval)

Occupation ^a	Relative ris for age cale	sk (RR) adjusted , county and ndar year	Relative risk (RR) adjusted for age, county and socioeconomic group	
	RR	95% C1	RR	95% CI
Certain metal processing workers ^b	2.8	1.4-5.8	2.8	1.4-5.6
Stonecutters and carvers ^c	2.0	1.2-3.6	1.9	1.1-3.4
Frame and circular sawyers and planers	1.8	1.0-3.0	1.7	1.0-3.0
Paper and paperboard workers	1.8	1.1-2.9	1.6	1.0-2.7
Ship's deck officers	1.8	1.0-3.2	1.9	1.0-3.4
Road traffic supervisors	1.7	1.1-2.6	1.9	1.2-2.9
Air traffic controllers, flight dispatchers ^c	1.7	1.0-2.9	1.8	1.1-3.3
Bus and tram conductors, traffic assistants ^c	1.6	1.0-2.5	1.5	0.9-2.3
Farm managers and supervisors ^c	1.5	1.0-2.5	1.6	1.0-2.6
Plastics product workers ^c	1.5	1.1-2.0	1.4	1.0-1.9
Railroad engineers and assistants	1.4	1.1-1.8	1.3	1.0-1.7
Motor-vehicle drivers, tram drivers	1.4	1.2-1.5	1.3	1.1-1.4
Construction machine operators	1.4	1.0-1.9	1.3	1.0-1.8
Catering supervisors ^c	1.4	1.1-1.7	1.5	1.1-1.9
Building caretakers	1.3	1.1-1.6	1.3	1.0-1.5
Working proprietors, retail trade	1.3	1.0-1.6	1.3	1.0-1.6
Paper pulp workers ^c	1.3	1.0-1.7	1.3	1.0-1.7
Butchers and meat preparers ^c	1.3	1.0-1.6	1.2	1.0-1.5
Mechanical engineers and technicians	1.2	1.0-1.3	1.3	1.1-1.5
Property managers, store managers	1.2	1.0-1.5	1.3	1.0-1.6
Furnacemen ^c	1.2	1.0-1.5	1.2	1.0-1.4
Toolmakers, machine-tool setters and operators, machinery fitters and machine assemblers	1.2	1.1-1.3	1.1	1.0-1.2
Certain civilian protective service workersc, d	1.2	1.0-1.5	1.2	1.0-1.4
Welders and flame cutters ^c	1.1	1.0-1.3	1.0	0.9-1.2
Secretaries, typists and related work ^c	1.1	1.0-1.2	1.2	1.1-1.3
Truck and conveyor operators ^c	1.1	1.0-1.3	1.1	0.9-1.2
Store and warehouse workers	1.1	1.0-1.3	1.1	0.9-1.3

^a Persons working in a certain occupation in both 1970 and 1975 unless marked with superscript c.
 ^b Excludes furnacemen, metal annealers, temperers and case-hardeners, rolling-mill workers, smiths and forgers, metal casters and molders and wire and tube drawers.
 ^c Individuals working in the occupation in 1970 or 1975, compared with others employed in 1970 or 1975.
 ^d Excludes firefighters, policemen, customs surveillance officials, and prison and reformatory officials.

Workers at risk

Table 3. Occupations with a decreased incidence of a first myocardial infarction among the men. (95% CI = 95% confidence interval)

Occupation ^a	Relative ris for age cale	sk (RR) adjusted , county and ndar year	Relative risk (RR) adjusted for age, county and socioeconomic group	
	RR	95% Cl	RR	95% Cl
Judges and other lawyers in courts of law ^b	0.3	0.2-0.6	0.4	0.2-0.6
Corporation and organization lawyers ^b	0.5	0.3-0.8	0.5	0.3-0.9
Chemists, physicists	0.5	0.3-0.8	0.5	0.3-0.9
Physicians and surgeons	0.6	0.5-0.9	0.7	0.5-0.9
Dentists	0.6	0.4-1.0	0.6	0.4-1.0
Designers ^b	0.6	0.4-1.0	0.6	0.4-1.0
Composers and musicians ^b	0.6	0.4-0.9	0.6	0.4-1.0
University and higher education teachers	0.7	0.4-1.0	0.7	0.5-1.1
Other business managers including managers of specific functions ^c	0.7	0.5-0.9	0.7	0.6-0.9
Economists, statisticiansb	0.7	0.5-1.0	0.8	0.6-1.1
Bank employees ^b	0.7	0.5-1.0	0.8	0.6-1.1
Forest workers and log drivers	0.8	0.6-0.9	0.7	0.6-0.9
Working proprietors, agricultural, horticultural and forestry contractors	0.8	0.7-0.9	0.7	0.6-0.9
Government legislative and administrative workers	0.8	0.7-1.0	0.9	0.8-1.1
Architects, building and construction engineers and technicians	0.8	0.7—1.0	0.9	0.8-1.1
Teachers in theoretical subjects	0.8	0.6-1.0	0.9	0.6-1.1
Sculptors, painters, photographers and commercial artists ^b	0.8	0.6-1.0	0.7	0.6-1.0
Journalists, editors ^b	0.8	0.6-1.0	0.8	0.7-1.0
Accountants and auditors ^b	0.8	0.6-1.0	0.8	0.6-1.1
Librarians, archivists, and curatorsb	0.8	0.6-1.0	0.8	0.6-1.1
Advertising salesmen ^b	0.8	0.7-1.0	0.9	0.7-1.1
General managers	0.8	0.7-1.0	0.9	0.7-1.1
Bricklayers, concrete and construction workers, drivers and pipelayers	0.9	0.8-1.0	0.8	0.7—1.0
Electrical, electronics and telecommunications engineers and technicians	0.9	0.7-1.0	1.0	0.8-1.1
Bookkeepers, office cashiers ^b	0.9	0.7-1.0	0.9	0.8-1.1
Agricultural/livestock workers ^b	0.9	0.7-1.0	0.8	0.7-1.0
Certain engineers and technicians ^{b, d}	0.9	0.8-1.0	1.0	0.9-1.1
Plumbers and pipe fitters ^b	0.9	0.8-1.0	0.8	0.7-1.0

Workers at risk

Type of economic sector	n	% of total
Agriculture, forestry and fishing	101	0.7
Mining and quarrying	14	0.1
Manufacturing	2650	18.7
Electricity, gas, steam and air conditioning supply	9	0.1
Water supply; sewerage, waste management and remediation activities	234	1.6
Construction	1139	8.0
Wholesale and retail trade; repair of motor vehicles and motorcycles	2270	16.0
Transportation and storage	1025	7.2
Accommodation and food service activities	257	1.8
Information and communication	424	3.0
Financial institutions	831	5.8
Renting, buying and selling of real estate	136	1.0
Consultancy, research and other specialised business services	997	7.0
Renting and leasing of tangible goods and other business support services	867	6.1
Public administration, public services and compulsory social security	409	2.9
Education	584	4.1
Human health and social work activities	888	6.2
Culture, sports and recreation	203	1.4
Other service activities	190	1.3
Unknown	981	6.9

Interventions

Interventions to support return to work for people with coronary

Interventions to support return to work for people with coronal heart disease (Review)

Hegewald J, Wegewitz UE, Euler U, van Dijk JL, Adams J, Fishta A, Heinrich P, Seidler A

- Person-directed, psychological counselling versus usual care
 - Participants working between one and five years (RR 1.09, 95% CI 0.88 to 1.34; three studies; low-certainty evidence).
- Person-directed, work-directed counselling versus usual care
 - Mean difference (MD) in days until return to work (MD –7.52 days, 95% CI –20.07 to 5.03 days; four studies; low-certainty evidence)
 - Cardiac death (RR 1.00, 95% CI 0.19 to 5.39; two studies; moderate-certainty evidence)
- Person-directed, physical conditioning interventions versus usual care
 - Return-to-work rates at six to 12 months (RR 1.09, 95% Cl 0.99 to 1.20; five studies; low-certainty evidence)
 - Cardiac death (**RR 1.00, 95% Cl 0.35 to 2.80**; two studies; moderate-certainty evidence)
- Person-directed, combined interventions versus usual care
 - Return to work up to six months (RR 1.56, 95% CI 1.23 to 1.98; four studies; low-certainty evidence)
 - Reinfarctions (RR 0.56, 95% Cl 0.23 to 1.40; three studies; moderate-certainty evidence)
- Work-directed, interventions
 - No studies

Interventions

• N=15,762 matched individuals (18-70 years)

• PCI & CABG

Questions Questions Questions

- Combinations of occupational CVD risk factors
- Job insecurity vs occupational CVD risk factors
- Night shift vs vocational rehabilitation
- Leisure vs. occupational physical activity
- Night shift versus rotational shift work
- Dose response relationships
- Can we mitigate the effects of night shift related stress factors
- Occupational counselling vs standard care
- Individual-tailored return-to-work

Take home messages

- Start reintegration during cardiac rehabilitation
- Inventorize work capacity and exposure to occupational CVD risk factors
- Refer to cardiac rehabilitation (also as Occupational Physicians)
- Cooperate: cardiac rehabilitation / occupational hygienist / cardiologist
- Shared decision
- Refer to expertise centra

Mijn soep is koud!

HIELD GODFRIED VAN BOUILLON VAN SOEP?

Het is voor hem te hopen van wel, want in de middeleeuwen was soep een belangrijk voedingsmiddel, zowel voor boeren als voor ridders zoals Godfried van Bouillon.

MISSIE GESLAAGD

Godfried van Bouillon (1061-1100) was een moedig ridder en verre verwant van Karel de Grote. Hij was in 1095 een van de leiders van de Eerste Kruistocht. Hij verkocht zijn kasteel om de tocht te betalen en leidde een leger kruisvaarders naar het Heilige Land. Bestemming? Jeruzalem. Het doel? De moslims verdrijven uit de gebieden van de christenen. Nadat de kruisvaarders Jeruzalem hadden veroverd in 1099, stichtte de koene strijder Godfried het koninkrijk Jeruzalem. Hij kon er echter niet lang van genieten. Want hij kreeg vreselijke koorts en stierf amper een jaar na de verovering. Zijn broer Boudewijn I volgde hem op.

> Gilbert Wijntjens <u>g.w.wijntjens@amsterdamumc.nl</u>; 0623924380